Pointwise Convergence of Double Trigonometric Series
نویسندگان
چکیده
منابع مشابه
Pointwise Convergence of Trigonometric Series
We establish two results in the pointwise convergence problem of a trigonometric series [An] £ cne inl with lim Hm £ I bTck | = 0 |n|< -x. * Jn-»oo \k\-n for some nonnegative integer m. These results not only generalize Hardy's theorem, the Jordan test theorem and Fatou's theorem, but also complement the results on pointwise convergence of those Fourier series associated with known 1}-convergen...
متن کاملUniform Convergence of Double Trigonometric Series
It is a classical problem in Fourier analysis to give conditions for a single sine or cosine series to be uniformly convergent. Several authors gave conditions for this problem supposing that the coefficients are monotone, non-negative or more recently, general monotone. There are also results for the regular convergence of double sine series to be uniform in case the coefficients are monotone ...
متن کاملPointwise convergence of Fourier series
In the early 19 century, J. Fourier was an impassioned advocate of the use of such sums, of course writing sines and cosines rather than complex exponentials. Euler, the Bernouillis, and others had used such sums in similar fashions and for similar ends, but Fourier made a claim extravagant for the time, namely that all functions could be expressed in such terms. Unfortunately, in those days th...
متن کاملOn a pointwise convergence of trigonometric interpolations with shifted nodes
We consider trigonometric interpolations with shifted equidistant nodes and investigate their accuracies depending on the shift parameter. Two different types of interpolations are in the focus of our attention: the Krylov-Lanczos and the rational-trigonometric-polynomial interpolations. In both cases, we find optimal shifts that provide with the best accuracy in different frameworks.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1993
ISSN: 0022-247X
DOI: 10.1006/jmaa.1993.1045